Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Total Environ ; 818: 151702, 2022 Apr 20.
Article in English | MEDLINE | ID: covidwho-1527855

ABSTRACT

The COVID-19 pandemic has shattered millions of lives globally and continues to be a challenge to public health due to the emergence of variants of concern. Fear of secondary infections following COVID-19 has led to an escalation in antimicrobial use during the pandemic, while some antimicrobials have been repurposed as treatments for SARS-CoV-2, further driving antimicrobial resistance. India is one of the largest producers and consumers of antimicrobials globally, hence the task of curbing antimicrobial resistance is a huge challenge. Practices like empirical antimicrobial prescription and repurposing of drugs in clinical settings, self-medication and excessive use of antimicrobial hygiene products may have negatively impacted the prevalence of antimicrobial resistance in India. However, the expanded production of antimicrobials and disinfectants during the pandemic in response to increased demand may have had an even greater impact on the threat of antimicrobial resistance through major impacts on the environment. The review provides an outline of the impact COVID-19 can have on antimicrobial resistance in clinical settings and the possible outcomes on the environment. This review calls for the upgrading of existing antimicrobial policies and emphasizes the need for research studies to understand the impact of the pandemic on antimicrobial resistance in India.


Subject(s)
Anti-Infective Agents , COVID-19 , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Humans , Pandemics , SARS-CoV-2
2.
Virus Res ; 307: 198618, 2022 01 02.
Article in English | MEDLINE | ID: covidwho-1504602

ABSTRACT

The second wave of COVID-19 caused by severe acute respiratory syndrome virus (SARS-CoV-2) is rapidly spreading over the world. Mechanisms behind the flee from current antivirals are still unclear due to the continuous occurrence of SARS-CoV-2 genetic variants. Brazil is the world's second-most COVID-19 affected country. In the present study, we identified the genomic and proteomic variants of Brazilian SARS-CoV-2 isolates. We identified 16 different genotypic variants were found among the 27 isolates. The genotypes of three isolates such as Bra/1236/2021 (G15), Bra/MASP2C844R2/2020 (G11), and Bra/RJ-DCVN5/2020 (G9) have a unique mutant in NSP4 (S184N), 2'O-Mutase (R216N), membrane protein (A2V) and Envelope protein (V5A). A mutation in RdRp of SARS-CoV-2, particularly the change of Pro-to Leu-at 323 resulted in the stabilization of the structure in BRA/CD1739-P4/2020. NSP4, NSP5 protein mutants are more virulent in genotype 15 and 16. A fast protein folding rate changes the structural stability and leads to escape for current antivirals. Thus, our findings help researchers to develop the best potent antivirals based on the new mutant of Brazilian isolates.


Subject(s)
Coronavirus 3C Proteases/genetics , Protein Folding , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Brazil , COVID-19/pathology , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus RNA-Dependent RNA Polymerase/genetics , Genetic Variation/genetics , Genome, Viral/genetics , Humans , Phosphoproteins/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Virulence/genetics
3.
Virus Res ; 290: 198175, 2020 12.
Article in English | MEDLINE | ID: covidwho-811767

ABSTRACT

The outbreak and spread of new strains of coronavirus (SARS-CoV-2) remain a global threat with increasing cases in affected countries. The evolutionary tree of SARS-CoV-2 revealed that Porcine Reproductive and Respiratory Syndrome virus 2, which belongs to the Beta arterivirus genus from the Arteriviridae family is possibly the most ancient ancestral origin of SARS-CoV-2 and other Coronaviridae. This review focuses on phylogenomic distribution and evolutionary lineage of zoonotic viral cross-species transmission of the Coronaviridae family and the implications of bat microbiome in zoonotic viral transmission and infection. The review also casts light on the role of the human microbiome in predicting and controlling viral infections. The significance of microbiome-mediated interventions in the treatment of viral infections is also discussed. Finally, the importance of synthetic viruses in the study of viral evolution and transmission is highlighted.


Subject(s)
Biological Evolution , Coronaviridae Infections/transmission , Coronaviridae/genetics , Microbiota , Zoonoses/transmission , Animals , COVID-19/transmission , COVID-19/virology , Chiroptera/virology , Coronaviridae/classification , Coronaviridae/physiology , Coronaviridae Infections/virology , Genome, Viral/genetics , Humans , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Zoonoses/virology
4.
Gene Rep ; 20: 100777, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-635599

ABSTRACT

The coronavirus disease (COVID-19) belongs to the family Severe Acute Respiratory Syndrome (SARS-CoV). It can be more severe for some persons and can lead to pneumonia or breathing difficulties resulting in the death of immune-compromised patients. We performed a phylogenomic and phylogeographic tree from the collected datasets. Phylogenomic analysis or sequence-based phylogeny showed an evolutionary relationship between the geographical strains. The phylogenomic tree grouped into two major clades consists of various isolates of SARS-CoV-2 and Bat SARS-like coronavirus, Bat coronavirus, and Pangolin coronavirus. The phylogenetic neighbor of newly sequenced Indian strains (Accession: MT012098.1, MT050493.1) was revealed to identify the variations between the nCoV-19 strains. The results showed keen evidence that SARS-CoV-2 has evolved from Bat SARS-like coronavirus. The evolutionary history and comparative proteomic analysis provide a new avenue for the current scientific research related to the coronavirus.

SELECTION OF CITATIONS
SEARCH DETAIL